If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9q^2+36q+27=0
a = 9; b = 36; c = +27;
Δ = b2-4ac
Δ = 362-4·9·27
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-18}{2*9}=\frac{-54}{18} =-3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+18}{2*9}=\frac{-18}{18} =-1 $
| 80-2x=28 | | 7(x-4)-3(x+2)=4(x-2) | | 7c+18=38+2c | | x+4/3-x+5/6=x+7 | | x+69=129+x | | 0=4.9t^2+11t-0.4 | | 88n-4=6n+6 | | 12.29+0.13x=13.04-0.11x | | -5+7=6z-5(z-6) | | c128=41.2 | | -2x-14=11 | | (n-2)180=1,980 | | 0.3x+0.85=-0.6 | | 26=x/7+5 | | 30=t-3 | | -6(x+1)+8x=2(x-30 | | 53+14=103-8x | | -5=-2t | | -8j−15j−-12j=-11 | | -17+4x=-49 | | -3(2x-1)=16 | | 7x+3=-8+8x | | 2+2/5(k+4)=4 | | 1/12y+4=-13 | | 2,1=2*3,14*x | | 13=x/3=8 | | 5x(x+3)-4x=66 | | 2x+5-4x=(-25) | | 3m=5(m+3)+-3 | | 1/4y+5=-13 | | 10=-10(2c+3) | | 14w-5w=9 |